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Abstract— Self-supervised contrastive learning has proven
to be successful for skeleton-based action recognition. For
contrastive learning, data transformations are found to fun-
damentally affect the learned representation quality. However,
traditional invariant contrastive learning is detrimental to the
performance on the downstream task if the transformation
carries important information for the task. In this sense, it limits
the application of many data transformations in the current
contrastive learning pipeline. To address these issues, we propose
to utilize equivariant contrastive learning, which extends invari-
ant contrastive learning and preserves important information.
By integrating equivariant and invariant contrastive learning
into a hybrid approach, the model can better leverage the
motion patterns exposed by data transformations and obtain
a more discriminative representation space. Specifically, a self-
distillation loss is first proposed for transformed data of different
intensities to fully utilize invariant transformations, especially
strong invariant transformations. For equivariant transforma-
tions, we explore the potential of skeleton mixing and temporal
shuffling for equivariant contrastive learning. Meanwhile, we ana-
lyze the impacts of different data transformations on the feature
space in terms of two novel metrics proposed in this paper,
namely, consistency and diversity. In particular, we demonstrate
that equivariant learning boosts performance by alleviating the
dimensional collapse problem. Experimental results on several
benchmarks indicate that our method outperforms existing state-
of-the-art methods.

Index Terms— Self-supervised learning, skeleton-based action
recognition, contrastive learning.

I. INTRODUCTION

HE 3D skeleton is a highly efficient representation of

the human body structure and motion, as it uses the 3D
coordinates of key body joints to describe the human form.
In comparison to RGB videos and depth data, skeletons are
lightweight and protect the privacy of individuals. Due to
their ease of analysis and discriminative nature, skeletons have
become widely used in action recognition tasks.
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Supervised skeleton-based action recognition methods [1],
[2] have shown strong results, but they rely heavily on a large
amount of labeled training data, which can be costly to obtain.
To mitigate the need for full supervision, self-supervised learn-
ing [3], [4], [5], [6] has been applied to skeleton-based action
recognition. Self-supervised learning-based approaches utilize
a large amount of unlabeled data to model the spatial-temporal
relationship and obtain a meaningful representation space
through the use of various pretext tasks.

In the field of machine learning, there are two main
paradigms for self-supervised learning: reconstruction-based
and contrastive learning-based methods. Reconstruction-based
approaches [5], [7], [8] employ an encoder-decoder model
to reconstruct the input data from a latent representation,
capturing the spatial-temporal correlations within the data.
Contrastive learning-based methods [9], [10] aim to maximize
the mutual information between different augmented views
of the same data by comparing them with other views of
unrelated data. This involves applying various transformations,
such as rotation, scaling, and translation, to the input skeleton
data to create augmented views of the original data. It enables
the model to learn a discriminative representation of the
data that is invariant to these transformations. Rao et al. [9]
employed shearing and cropping for data transformation.
Guo et al. [10] extended this approach by using additional aug-
mentations, such as rotation, masking, and flipping, to improve
the consistency of the contrastive learning method.

Data transformation has been proven to fundamentally affect
the learned representation quality. Diverse data transformations
provide rich movement patterns and greater semantic consis-
tency. The model tends to discard the augmentation-related
information to achieve invariant learning under data transfor-
mations. However, this can be detrimental to the performance
of the downstream task if the transformation carries important
information that is needed for the task. For example, temporal-
domain information is often crucial for motion recognition
tasks, as it captures the temporal dynamics of the action
being performed. Previous methods [10], [11], [12], [13]
based on contrastive 3D action representation learning solely
focus on the invariant data transformations, i.e., pursuing
the consistency between two augmented views. However,
this limits the wider application of skeleton data transforma-
tions in contrastive learning, because some transformations
are found detrimental to the downstream tasks. For exam-
ple, using temporal-domain shuffling as a transformation
in contrastive learning destroys this temporal information,
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adversely affecting the downstream performance of the model.
How to utilize the novel motion patterns exposed by these
transformations, to improve the representation learning for 3D
action recognition, remains an under-explored problem.

To address this issue, it is necessary to develop self-
supervised learning methods that can preserve the transforma-
tion information for the use of data transformations. Therefore,
we extend the previous contrastive learning approach, which
is called invariant contrastive learning because invariant
representations are learned, to equivariant contrastive learn-
ing. Invariant contrastive learning draws the data features
closer after data transformation, while equivariant contrastive
learning preserves the differences among the features of
the transformed data, maintaining the augmentation-related
information. By employing equivariant learning for certain
transformations, the model can utilize relevant information
about the transformations for the downstream task. We show
that this approach, which combines equivariant and invariant
contrastive learning, further improves the performance by bet-
ter utilizing the relevant information about the transformations.

Specifically, for equivariant contrastive learning, we explore
the potential of two data transformations: skeleton mixing
and temporal shuffling. These transformations generate more
diverse motion patterns and encourage the model to capture
the augmentation-related information inherent in the data.
Meanwhile, consistent learning becomes difficult when data
transformations are enhanced. For better optimization of the
feature consistency, we propose a distillation loss for trans-
formed data of different intensities. We utilize knowledge
gained from the basic transformations to guide the learning
of the strong transformations.

To quantitatively assess the impacts of different data
transformations on the feature space learned by the model,
we analyze the distribution of the feature space from the
perspective of mutual information. We decompose the mutual
information into two novel metrics: consistency and diversity.
These metrics enable us to measure the degree to which
the transformed data maintain the underlying structure of the
original data and the differences among the transformed data,
respectively. Our experiments demonstrate that invariant data
transformations prioritize consistency over diversity, while
equivariant data transformations primarily optimize diversity.

In particular, we specifically examine the effects of different
data transformations on the dimensional collapse phenomenon
in the feature space. Dimensional collapse occurs when the
learned representation collapses onto a lower-dimensional sub-
space, resulting in a loss of information for the downstream
task. Our results show that consistency tends to exacerbate
dimensional collapse, while diversity mitigates it. Based on
these findings, we demonstrate that equivariant data transfor-
mations improve the representation quality by increasing the
feature diversity and alleviating dimensional collapse.

Our main contributions are summarized as follows:

« In this paper, we propose to integrate equivariant data
transformations with the existing invariant data transfor-
mations to improve the performance of skeleton-based
representation learning for action recognition. The pro-
posed equivariant skeleton data transformations assist
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the model in encoding more diverse motion patterns,
while the invariant transformations lead to better semantic
consistency between positive pairs.

o To further optimize the feature consistency, we employ
a distillation loss for the transformed data of different
intensities. This loss function enables us to transfer
knowledge gained from the basic transformations to guide
the learning of the strong transformations.

o« We analyze the transformations in terms of mutual
information and investigate the dimensional collapse
phenomenon in the feature space. We demonstrate that
equivariant data transformation improves the represen-
tation quality by increasing the feature diversity and
alleviating dimensional collapse.

The remainder of the paper is organized as follows.
In Sec. II, previous works on skeleton-based action recognition
and self-supervised learning are reviewed. Sec. III delves into
the details of the suggested self-supervised learning method
and quantitative analysis. In Sec. IV, we present the results of
our experiment and the model analysis. Sec. V presents the
conclusions of this study.

II. RELATED WORK

In this section, we first introduce the related work on
skeleton-based action recognition and then briefly review
contrastive learning.

A. Skeleton-Based Action Recognition

Skeleton-based action recognition is a fundamental yet
challenging field in computer vision research. Previous
skeleton-based action recognition methods usually consider the
geometric relationship among skeletal joints [14], [15]. The
latest methods give more attention to deep networks. Skeleton-
based action recognition methods can be divided into recurrent
neural network (RNN)-based, convolutional neural network
(CNN)-based, graph convolutional network (GCN)-based, and
transformer-based methods. Du et al. [16] applied a hierarchi-
cal RNN to process body keypoints. Attention-based methods
are further proposed for automatically selecting important
spatial joints [17], [18], [19] and temporal frames [17], [18]
to adaptively learn the simultaneous appearance of skele-
tal joints. For CNN-based methods, some works [20], [21]
transform each skeleton sequence into image-like represen-
tations and apply a CNN model to extract spatial-temporal
information. Recently, inspired by the natural topology graph
of the human body, GCNs have aroused a surge of interest
in skeleton-based action recognition. To extract both the
spatial and temporal structural features from skeleton data,
Yan et al. [22] proposed spatial-temporal graph convolutional
networks. To make the graphic representation more flexible,
attention mechanisms are applied in [1], [2], and [19] to
adaptively capture discriminative features based on spatial
composition and temporal dynamics. Chi et al. [23] designed
an information bottleneck-based learning objective to guide the
model to learn informative but compact latent representations.
Duan et al. [24] implemented six different algorithms under
a unified framework with both the latest and original good
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practices to ease the comparison of efficacy and efficiency.
Meanwhile, transformer-based models [25] also show remark-
able results by using the long-range temporal dependencies
due to the use of an attention mechanism. To balance feature
representation for cross-modal data, STAR-Transformer [26]
effectively represents two cross-modal features as a rec-
ognizable vector. To close the performance gap between
Transformers and GCNs, Zhou [27] proposed a new self-
attention (SA) extension, named Hypergraph Self-Attention
(HyperSA), to incorporate inherently higher-order relations
into the model.

Generally, RNN-based methods can well model the tem-
poral features while struggling to learn a good spatial
representation. CNN-based methods can simultaneously model
spatio-temporal information by reorganizing the skeleton.
However, they rely heavily on the pre-defined skeleton rep-
resentation, which is often designed heuristically and can be
sub-optimal. Benefiting from the natural topological struc-
ture of the human body, GNNs are good at modeling the
spatial-temporal features of the skeleton, while they are also
found to be sensitive to the adjacent matrix. To get rid of
the influence of artificially restricted adjacency matrix, the
Transformer-based approaches can fully model the relationship
between different joints by the attention mechanism. However,
this often results in high computational complexity and possi-
ble over-fitting problems.

Most importantly, all these methods require lots of anno-
tated data, which can be costly to achieve. To this end,
we turn to the self-supervised learning paradigm, which
learns representations from unlabeled data. Among the exist-
ing self-supervised learning methods for skeleton, contrastive
learning has attracted lots of attention due to its effective
ability to learn the discriminative feature space, and has
shown superior performance advantage against other meth-
ods, e.g., reconstruction-based [3], [7] and pseudo-label-based
methods [8], [28]. Next, we will introduce and review the
contrastive representation learning briefly.

B. Contrastive Representation Learning

Contrastive representation learning dates back to [29]. The
key idea is to pull the positive pairs together while pushing
away the negative pairs to learn a highly distinguishable fea-
ture space. Many works [30], [31], [32], [33], [34] have been
presented in which representations are learned by contrasting
positive pairs against negative pairs, which have achieved
remarkable results. SimCLR, proposed by Chen et al. [35],
uses a series of data augmentation methods, such as random
cropping, Gaussian blurring and color distortion, to generate
positive samples. He et al. [36] applied a memory module that
adopts a queue to store negative samples, and the queue is con-
stantly updated during training. In addition, many promising
contrastive learning methods have been successively presented,
such as BYOL [37], SimSiam [38], and SwAV [39].

In self-supervised skeleton-based action recognition, con-
trastive learning has also attracted the attention of numerous
researchers. Rao et al. [9] applied MoCo for contrastive learn-
ing with a single stream. To utilize cross-stream knowledge,
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Li et al. [11] proposed a multiview contrastive learning
method, and Thoker et al. [6] employed multiple models to
learn from different skeleton representations. This work pro-
poses performing knowledge distillation among the different
modalities, i.e.., joint, bone, and motion. Recently, data
transformations have been proven to significantly affect rep-
resentation quality [40], [41], and many works have focused
on constructing positive/negative pairs via data transformation.
Rao et al. [9] first proposed a series of augmentations and
applied the MoCo framework. Guo et al. [10] proposed using
more extreme augmentations to boost contrastive learning.
Zhang [13] further utilized strong augmentations by hier-
archical consistency learning. Huang et al. [42] proposed a
graph contrastive learning framework for skeleton-based action
recognition to explore the global context across all sequences.
Zhou et al. [43] proposed a Partial Spatio-Temporal Learning
(PSTL) framework to exploit the local relationship from a
partial skeleton sequences built by a unique spatio-temporal
masking strategy. However, most works have only employed
invariant contrastive learning, and the exploration of equiv-
ariant contrastive learning is still insufficient. Recently,
E-SSL [44] was proposed, which applies a rotation transfor-
mation to images to perform equivariant contrastive learning,
and showed notable results. Inspired by this, we explore the
potential of combining equivariant and invariant contrastive
learning for skeleton data in this paper. Meanwhile, we present
a detailed analysis of the improvements achieved by equivari-
ant contrastive learning.

III. METHOD
A. Invariant and Equivariant Representation Learning

In this part, the proposed invariant and equivariant con-
trastive learning method is introduced for skeleton-based
action representation learning. We first present the definitions
of invariance and equivariance. Formally, we let 7 be the
transformation set and f(-) be the encoder. For any given
input X, invariant contrastive learning aims to obtain the
representation space invariant to 7:

VieT, f(t(x)=fX). )

In addition, more recent works [35], [36], [38] utilize the
two different transformed views and consider another invariant
form of derivation, which is also used in our method:

Vi, heT, f(n(x)=f(x). 2)

For the learning of equivariance, we follow the definition of
previous works [44], [45]:

VieT, 3p:(), f(x) = p(f(x), 3)

where p;(-) is the transformation in the encoder space,
parameterized by the transformation ¢. If p,(-) is the identity
transformation, then Eq. 3 is reduced to Eq. 1. In other
words, invariance can be regarded as a specific trivial case of
equivariance. From this definition, we know that the model
is encouraged to encode augmentation-related information
to achieve equivariant learning, and the different augmented
views are projected to different embeddings.
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In the following, we will elaborate on the pipelines of
the proposed invariant contrastive learning and equivariant
contrastive learning separately and provide an overview of the
full model.

1) Invariant Contrastive Learning: Traditional contrastive
learning frameworks encourage the model to learn the
invariants under different data transformations, which often
represent the semantic information. Formally, such a frame-
work is usually comprised of the following components:

« Data augmentation module, which employs data trans-
formations 7 to generate different views of the original
data, which are regarded as positive pairs;

o Query/Key encoder f(-) for mapping the input into the
latent feature space;

« Embedding projector /() for mapping the latent fea-
ture into an embedding space where the following
self-supervised loss is applied;

« Self-supervised loss, which is used to perform the feature
clustering operation in the embedding space. The key idea
is to pull the positive pairs together and push the negative
pairs away, obtaining a distinguishable embedding space.

Specifically, our framework, as shown in Fig. 1, is based
on MoCo v2 [36]. Given a skeleton sequence s, the posi-
tive pair (x,X’) is constructed via the transformation set 7.
Subsequently, we can obtain the corresponding feature rep-
resentations (z,z') via the query/key encoder f,(-)/fx(-)
and embedding projector s, (-)/ hi(-). Meanwhile, a memory
queue is maintained to store the negative samples accord-
ing to a first-in, first-out strategy. The model optimizes the
InfoNCE [46] loss to perform invariant contrastive learning:

exp(z -2/ /7)
exp(z-7'/t) + Z?i] exp(z - m,-/t)7
where m; is the i;; negative sample feature in M, M is
the number of negative features and t is the temperature
hyperparameter. The key encoder is a momentum-updated
version of the query encoder in MoCo v2.

Following recent works [6], [12], we adopt three data

transformations as the basic transformation set, namely, fem-
poral cropping, shearing, and joint jittering, which are used

AClnfo = _log (4)

in our baseline algorithm for contrastive learning. Meanwhile,
to further boost the invariant learning of the model, we intro-
duce more data transformations as the strong transformation
set. In addition to the transformations above, three more spatial
transformations are adopted in the set: flipping, rotation, and
Gaussian noise. Therefore, we optimize E};nfo and E?nfo
using the basic and strong data transformation sets, respec-
tively, to generate the positive pairs and learn the invariance
under different transformations.

However, strong data transformations can lead to seman-
tic information loss due to severe distortion [13], [41], [47],
and hence, directly optimizing the £§nf0 term is difficult.
The basically transformed views naturally provide a clue for
the invariant learning of strongly transformed views. There-
fore, we propose transferring the knowledge learned from
the basically transformed data to the strongly transformed
data for better guidance of invariant learning under strong
transformations. Specifically, we adopt the self-distillation
design for the relational knowledge [48], and the fol-
lowing proposed objective is optimized jointly with the
InfoNCE loss:

Lkp = —p (2, ) log p (z, T5),
P 1) = —o P& M/ 5
> exp(z-m;/T)
where z}) = fi(xp); z, = fy(X5); Xp and X, represent
the basically and strongly augmented data, respectively; and
7, and t; are the temperature hyperparameters. The gra-
dient of z,, which is the learning target, is stopped. This
is because the knowledge from the basically transformed
data is more confident and accurate, so we only use basic
views to supervise the strong views but not vice versa.
This self-distillation objective can further boost the invariant
learning under strong data transformations using the knowl-
edge of the basic transformation set, giving rise to better
representation.
Overall, the optimization objective for invariant contrastive
learning is as follows:

Liny = ,Cl;nfo + £§nf0 + Lkp. (6)
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2) Equivariant Contrastive Learning: To better utilize the
novel patterns exposed by data transformations, we integrate
the equivariant data transformations with the aforementioned
invariant data transformations. We show that this hybrid
approach can further improve the performance. Specifically,
we utilize two data transformations, namely, skeleton mixing
for the spatial dimension and temporal shuffling for the tempo-
ral dimension, in equivariant contrastive learning, as shown in
Fig. 2. Intuitively, these transformations may cause semantic
loss or changes, so we regard them as equivariant transforma-
tions, which is also supported by the results of the subsequent
experiments shown in Fig. 3. Next, we introduce these data
transformations and the task design.

Skeleton Mixing. Mixing transformations are widely used in
self-supervised learning [49], [50], [51], [52]. Here, we explain
and analyze them from the perspective of equivariant learning.
Specifically, skeleton mixing contains three mixing methods
designed for the skeleton data: cut mix [53], resize mix [54],
and mix up [55]. In the cut mix and resize mix meth-
ods, we first divide the skeletal joints into multiple subsets
according to different body parts of the human topology,
i.e., the trunk, right hand, left hand, right leg and left leg.
Then, we randomly select another skeleton sequence s’ and
mix it with the original data s at the level of a human body

part to generate the transformed data s;,,. The mixing ratio A
is defined as the ratio of the total number of replaced joints
to the total number of joints in the skeleton s. For the mix-up
method, we simply mix all the joints of s and s’ at a certain
mixing ratio A\ to generate the transformed data s,,:

sm = (1 —XN)s+ s @)

In the implementation, we randomly select a mixing method
from the above three methods and apply it to the skeleton data.
Skeleton mixing is viewed as a transformation of the original
data s. In this sense, it can be unreasonable to constrain
the model to learn the invariance under the transformation
because semantic preservation is not guaranteed when apply-
ing it. Therefore, inspired by the mixed labels widely used in
previous works [53], [54], [55], we manually construct z), as
the target feature to be learned according to the mixing ratio:

z, = (1= ) fi(s) + Afe(s). (8)

We find that the equivariant learning target based on this
prior can achieve a remarkable improvement in performance.
Specifically, the model is constrained to optimize the following
InfoNCE loss:

exp(zy - Z,/7)
exp(zm - Z,/T) + Z,Ai1 exp(zy, - m;/7)

where z,, = f;(Sm). S is mixed skeleton data, f,(-) is the
online encoder. In this way, different anchors are constructed
corresponding to different augmentations, and the model
learns the equivariance by modeling the mapping relationship
between the transformed data and the anchors.

Temporal Shuffling. For a given skeleton sequence s,
we chunk it into C clips along the temporal dimension. Then,
we randomly shuffle the clips and reassemble them into time-
out-of-order data. There are C! ways to shuffle the clips.
We deliberately choose a specific permutation for shuffling,
and the shuffling label corresponds to the associated label. We
constrain the model to be sensitive to the shuffling transfor-
mation and learn the equivariance in the encoder latent space.

Ly =—log (€
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Inspired by E-SSL [44], we apply a classifier h;(-) to take
the latent feature as input and predict the shuffling label.
In turn, the representation space learned by the model is
encouraged to contain augmentation-related information, such
as the temporal order. To ensure the preservation of temporal
relationships and prevent the model from learning incorrect
information, we propose the incorporation of equivariant con-
trastive learning. Specifically, our strategy involves training the
network to predict temporal order shuffling patterns, thereby
enabling the network to effectively capture temporal-domain
information. This innovative approach serves to enhance action
classification performance by enhancing the model’s temporal
understanding.

Specifically, denoting the data transformed using temporal
shuffling as s;, the objective to be optimized is as follows:

exp(z¢ - We/T)

eXP(Zt - We/T) + D421 i 2o €XP(2t - Wi /T)

L, = —log (10)

where z¢ = f,(s;) and c is the shuffling pseudolabel of s;.
w; corresponds to the i;; column vector in the weight of
predictor h;(-), which is a bank containing the learnable
positive/negative samples. Positive pairs refer to sequences
that undergo the same shuffling method, signifying that their
shuffling orders match. Conversely, negative pairs encompass
sequences with different permutation orders.

For equivariant contrastive learning, the optimization objec-
tive of the model is summarized as follows:

Legu =Ly + L. an

3) Full Model: We employ the above invariant and equivari-
ant contrastive learning design to train the encoder f(-), which
is then used in the downstream task after pretraining. The
model is trained in a multitasking manner, and the objective is

L= Einv + )\equﬁequ’ (12)

where .4y is a hyperparameter.

B. Consistency and Diversity Analysis of Self-Supervised
Representations

In this part, we present a detailed analysis of the relation
between data transformations and the feature space obtained
by pretraining. Two new metrics are proposed for evaluating
the consistency and diversity within the feature space based
on mutual information between transformed samples. These
metrics enable us to measure the quality of the feature space.

1) Mutual Information Estimation: Mutual information is
a measure of the dependence between two random variables,
X and Z. The mutual information between Z and Z' can be
regarded as the Kullback-Leibler (KL-) divergence between
the joint, Pzz/, and the product of the marginals Pz ® Pz

1(Z; Z)) = DxL(Pzz/||Pz ® Pz), 13)

where Dk is the KL divergence. The strength of the depen-
dence between two random variables, Z and Z/, can be
quantified using mutual information, which is a measure of
the divergence between the joint distribution of Z’ and Z' and
the product of their individual marginals. The large divergence
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indicates that there is a strong relationship between Z and Z/
and that knowledge of the value of one variable can provide
significant information about the other.

To calculate the mutual information, we utilize the
Donsker—Varadhan representation. A representation of the KL
divergence is given by the following theorem.

Theorem 1 (Donsker-Varadhan Representation): The KL
divergence is estimated by a variational method by maximizing
the dual problem:

Dk1(P||Q) = sup Ep[T] —log(Egle’ ),
TeT

(14)

where the supremum is taken over all fuctions T in T.
Therefore, the estimation of the mutual information of
transformed samples can be expressed as

1(Z;Z7)

Dxy (Pzz/||Pz ® Pz;)

Sup EPZZ’ [T] - log (EPZ®PZ/ [eT])
TeT

= SUP E(z,1)~ Py, [k(2(2), 8(2))]
g€g

- IOg (E(Z’z/)wpdalalglpda[a I:ek(g(Z)’g(Z/))iI) ’ (15)

where (z,2") ~ Ppos are features extracted by the pretrained
model of positive pairs. Pgaa = [ Ppos(z,2)dz’ is the
marginal distribution in the feature manifold. The function g(-)
maps z and z’ to a d-dimensional normalized feature embed-
ding on the hypersphere S¢~!. The function k(-) is a cosine
similarity measure that quantifies the similarity between the
two embeddings produced by g(-). To investigate the feature
space properties of different pretrained encoders, we fix the
pretrained encoder weights and then train the function g(-) to
maximize the equation for estimating the mutual information.
Therefore, we regard the former item as consistency and the
latter as diversity.

2) Consistency and Diversity Analysis: We quantitatively
evaluate the feature quality of different pretrained encoders
for a given data transformation using consistency and diversity.
By examining the consistency and diversity of the feature rep-
resentations produced by different encoders, we can identify
which encoders are most effective at capturing the relevant
information and relationships within the data.

e Consistency: Consistency refers to the degree of simi-
larity between positive samples. A high degree of consistency
indicates that the information related to the data transformation
has not been extracted by the encoder, and as a result, positive
samples are mapped to the same features. This means that the
features are not affected by the data transformation, as they
are representative of the inherent characteristics of the samples
rather than the transformation. On the other hand, a low
degree of consistency indicates that the extracted features
contain information about the data transformation, resulting
in the features of the same data being different under different
transformations. Formally, we define this as follows:

C = E@z)~Ppos [k(g(z), g(z’))] .

e Diversity: Diversity is the similarity of features between
two random samples. Higher diversity means that the feature

(16)
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TABLE I

ACCURACY OF DOWNSTREAM TASKS WITH DIFFERENT DATA
TRANSFORMATIONS USING EQUIVARIANT CONTRASTIVE
LEARNING AND INVARIANT CONTRASTIVE LEARNING

Transformation ‘ Invariant ~ Equivariant
Baseline | 84.7

Flip 86.7 84.0
Rotate 86.1 84.1
Noise 86.3 83.2
Shuffle 83.2 85.7
Mix 83.6 85.2
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space encodes more information. Lower diversity indicates a
collapse of the feature space, making some of the sample
features indistinguishable. Formally, we define this as follows:

b =log (E(z,z’)wdm@??dm [ek(g(l)’g (’/))]) .

3) Invariant and Equivariant Representation Learning:
Fig. 3 and Table I show the mutual information and action
recognition accuracy for different data transformations under
invariant contrastive learning and equivariant contrastive learn-
ing. The baseline method adopts the basic transformation
set for invariant learning only. The first three transforma-
tions, flipping, rotation and Gaussian noise, obtain better
performance under invariant contrastive learning, while the
performance decreases under equivariant contrastive learning.
The other two transformations, in contrast, show performance
improvement under equivariant contrastive learning instead
of invariant contrastive learning. By comparing the mutual
information metrics of the feature spaces obtained by invariant
and equivariant learning under these data transformations,
we can unsupervisedly distinguish between the two types of
transformations. The mutual information of the first three data
transformations is better under invariant contrastive learning
than under equivariant contrastive learning. This shows that
these three transformations are suitable for invariant con-
trastive learning. The mutual information metrics of the latter
two data transformations are compromised under invariant
contrastive learning. This indicates that consistent learning of
these transformations introduces more noise and degradation
into the feature space.

a7)

C. Relation to Dimensional Collapse

In self-supervised learning, dimensional collapse is a phe-
nomenon that occurs when the representation learned by the
model becomes constant or collapses onto a lower-dimensional
subspace. This can occur when the model is trained to mini-
mize the distances between embedding vectors of augmented
samples. One way to prevent complete collapse is through the
use of contrastive methods. However, it has been observed
that even with the use of contrastive methods, dimensional
collapse can still occur, where the embedding vectors occupy
a subspace that is of lower dimensionality than their original
space. This can limit the effectiveness of the self-supervised
learning model and should be taken into consideration when
designing and training these models.

Data Transformation

Fig. 4. Curves of consistency, diversity and dimensional collapse with data
transformation. A-I are continuously enhanced data transformations. A is
shearing, clipping. B adds joint jitter for 5 joints. C applies it to 10 joints.
D applies it to 15 joints. E, F, and G add the data transformations flipping,
rotation and noise, respectively, based on D. H and I add shuffling and mixing,
respectively. A-G are invariant contrastive learning. H and I add equivariant
contrastive learning. Simultaneously, we have amplified the diversity by a
factor of five, ensuring that distinctions are more prominently highlighted.

To investigate the dimensionality of the feature space,
we calculate the covariance matrix as follows:

N
M=z -0 -2,

i=1

(18)

where M is the covariance matrix. And z; = f(x;) is the
extracted feature of skeleton data x;. z = vazl zi/N.

Then, we compute the singular value decomposition of the
matrix. We observe that some of the singular values are close
to 0, i.e., , the dimensional collapse phenomenon occurs. The
collapse of the matrix M is harmful because it leads to a
reduction in the amount of information encoded.

To quantify the degree of collapse quantitatively, we propose
metrics for measuring the degree of variation in the distribution
of singular values:

>4 aio;
P({oi} {ai}, {bi}) = == (19)
2.i—1 bioi
where {o;} are the singular values arranged from largest to
smallest, {a;} is a given nondecreasing sequence, and {b;} is
a given nonascending sequence. Here, we set {a;} to be from
1 to d and {b;} to be from d to 1. When the difference between
the singular values is large, the indicator is close to 0. When
the singular values are equal, the indicator is 1.

Next, we observe the effects of consistency and diversity on
dimensional collapse.

Consistency, Diversity and Dimensional Collapse with
Growing Augmentations: Fig. 4 illustrates the trends of the
consistency and diversity measures as the number of data
transformations is progressively increased. In this particular
scenario, the first three data transformations are incorpo-
rated into the training using an invariant contrastive learning
approach, while the last two transformations are incorporated
using equivariant contrastive learning.

We observe that the curve can be divided into three stages.
In the first stage, the model focuses on optimizing consistency,
which results in dimensional collapse. This is a common issue
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Fig. 5. Curves between mutual information and dimensional collapse with

the downstream task accuracy. The mutual information predicts the accuracy
under data transformations A-E, and the dimensional collapse predicts the
accuracy under E-I in Fig. 4.

TABLE I

LINEAR RELATIONSHIP BETWEEN MUTUAL INFORMATION AND
DIMENSIONAL COLLAPSE AND DOWNSTREAM
TASK ACCURACY

\ Mutual Information  Dimensional Collapse

R? 0.93 0.94
coeff. 12.9 26.8
intercept. 75.6 76.8

in deep learning, where the model may prioritize minimizing
the similarity loss over capturing the underlying structure of
the data. Stronger transformations make the discrimination
task nontrivial, constraining the model to extract meaning-
ful motion patterns from the skeleton data. However, this
increased consistency of positive pairs also leads to the aggre-
gation of nearby features, resulting in the collapse of the
dimensionality of the feature space. This can lead to the loss
of information inherent in the data.

In the second stage, we introduce more challenging data
transformations into the model. More novel motion patterns
are exposed, improving the diversity of the model, in addition
to the consistency. This helps mitigate the dimensional col-
lapse because more difficult data transformations lead to richer
motion patterns and representations. The consistency gradually
saturates, so the model mainly optimizes the diversity, which
increases the dimensionality of the feature space.

Finally, in the third stage, we incorporate equivariant con-
trastive learning into the model, which further enhances the
optimization of the diversity. Because equivariant contrastive
learning extracts diverse features encoding the augmentation-
related information, the dimensional collapse problem is
further corrected. Thus, the model is able to effectively encode
and learn richer and more meaningful representations for the
downstream task.

Overall, our proposed method effectively alleviates dimen-
sional collapse by introducing equivariant contrastive learning,
giving rise to better performance on the downstream task.

D. Relation to Downstream Tasks

To further explore the mutual information and dimensional
collapse in relation to downstream tasks, we employ these two
metrics to predict the accuracy of downstream action recog-
nition. Fig. 5 and Table II show the correlations of these two
metrics with the action recognition performance. The accuracy
of action recognition continues to increase as the mutual

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 33, 2024

information increases. After the mutual information stabilizes,
the accuracy continues to improve as the dimensional collapse
is alleviated.

We next analyze the performance of these two metrics in
relation to downstream tasks from a theoretical perspective.
The Bayes error rate P, represents the lowest error that can
be achieved by any classifier that is trained on the given data
representations. It is considered to be the benchmark for the
performance of a classifier. We let z and z’ be the extracted
features and y be the prediction for labels Y given z. The Bayes
error rate P, is defined as P, = 1— E,~z[max,cy p(§y = y|2)].

Theorem 2 (Bayes Error Rate of Representations): For
a given feature distribution Z of skeleton data and a
distribution 7 of its transformed data, the Bayes error can
be estimated as:

P, <1 — ¢ HY)=I(ZY)

IA

— | — o~ (HYV)—-I@ZNX1Z)-1(ZZ.Y))

(20)

Therefore, to reduce the error rate, we need to increase
two types of mutual information: I(Z, Y|Z') and I1(Z,Z',Y).
Moreover, 1(Z,72/,Y) = I1(Z,7/) — I(Z,Z'|Y). We increase
the mutual information I(Z,Z’) when optimizing invariant
contrastive learning, so the mutual information I(Z,Z’,Y)
will keep increasing. However, the previous method using
only invariant contrastive learning extracts only this part of
the mutual information. 7(Z, Y|Z') is ignored, resulting in a
suboptimal final result. This information is then extracted by
the encoder in equivariant contrastive learning.

Next, we show that alleviating dimensional collapse can
boost I (Z, Y|Z'). Since it is less than the entropy of the feature
space H(Z), increasing the entropy of the feature space can
raise the upper bound of this part of the mutual information.
Therefore, we show that alleviating dimensional collapse can
increase the entropy of the feature space.

The covariance matrix is rewritten as

N
M=Z(z,- -2z -2 =777, 1)
i=1

where Z = [zy — Z,...,zy — Z] is randomly sampled from
the centered feature distribution Z. For simplicity of analysis,
we assume that each item of the feature distribution obeys the
same Gaussian distribution z; — Z ~ N(0, c2I). We estimate
their eigenvalues using the Marcenko—Pastur theorem.

Theorem 3 (Marcenko-Pastur Law for Wishart Matrices):
Let p(x) be the empirical spectral measure of the random
matrix M = ZZT, where Z is a d x N random matrix
of i.i.d. Gaussian random variables N(0, 02). When N tends
to infinity, the p(x) converges weakly almost surely to the
Marcenko-Pastur law defined by:

Vs =0k —ao)

X

where ax = o>(1 & J/u)?* and u = %.

This theorem states that the eigenvalues of the matrix are
distributed in an interval [a_, a4]. The smallest eigenvalue is
proportional to the variance o2, Alleviating dimensional col-
lapse increases the minimum eigenvalue. Thus, the mitigation

(22)
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of dimensional collapse increases the variance of the feature
distribution.
However, the entropy of the Gaussian distribution is

H(Z) = %(ann +1)+dno. (23)

As the variance increases, the entropy of the feature space
also increases. Hence, we show that by introducing equivariant
contrastive learning, we alleviate the dimensional collapse and,
thus, increase the entropy of the feature space. Therefore,
I(Z,Y|Z') is increased.

IV. EXPERIMENT RESULTS
A. Dataset

To fully demonstrate the effectiveness of our method,
we evaluate the model on three large-scale datasets:

1) NTU RGB+D 60 Dataset (NTU 60) [61]: There are
56,578 videos in this dataset, with 60 annotations and 25 joints
in each frame. These samples were recorded by Microsoft
Kinect v2 cameras. We adopt the following two evaluation
protocols: a) cross-subject (xsub): the data for training and
testing are collected from 40 different subjects; and b) cross-
view (xview): the data for training and testing are captured in
3 different views: front view and 45-degree views for the left
side and right side.

2) NTU RGB+-D 120 Dataset (NTU 120) [62]: This is an
extension of NTU 60. It contains a total of 114,480 videos,
with 120 action categories. Two recommended protocols are
adopted: a) cross-subject (xsub): the data for training and
testing are collected from 106 different subjects; and b) cross-
setup (xset): the data for training and testing are collected from
32 different setups with different camera locations.

3) PKU Multimodality Dataset (PKUMMD) [63]: PKU-
MMD covers a range of detailed information about human
activities and a multimodality 3D understanding of human
actions. The actions are organized into 51 action categories
and include almost 20,000 instances. There are 25 joints in
each sample. PKUMMD is divided into two versions, Part I
and Part II. In Part II, action recognition is more difficult
because the large view variation and heavy occlusion cause
more skeleton noise. Experiments are conducted according to
a cross-subject protocol and on the two subsets.

B. Implementation Details

1) Data Preprocessing and Training Strategy: For a fair
comparison, we follow the experimental settings of recent
works [6] [12]. For data preprocessing, first, all sequences
of skeletons are downsampled to 300 frames. Then, in every
forward pass, we crop and resize the skeleton sequences to
64 frames via the temporal cropping transformation to train
the model.

We adopt a 3-layer Bi-GRU as the backbone, of which
the hidden dimension is set to 1024. MLPs are used as the
projection heads h,(-) and hy(-), which project the features
into the embedding with 128 dimensions. Similarly, we use an
MLP as the classifier /;(-) for temporal shuffling prediction.

During self-supervised pretraining, the model is trained for
450 epochs in total, with a batch size of 128. The initial
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learning rate is 0.02 and is reduced to 0.002 at 350, epochs.
We employ the SGD optimizer with a momentum of 0.9, and
the weight decay is 0.0001. The size of the memory bank M
is set to 16384. The temperature t in the InfoNCE loss is set
to 0.07, and the temperatures 7, and 7, are set as 0.05 and 0.1,
respectively. For temporal shuffling transformation, we set the
number of clips to be shuffled to 4. .4, is 1.0.

For a fair comparison, we obtain the fusion results of
multiple streams by summing the prediction scores after the
fully connected layer following previous works. Specifically,
we adopt the following three streams to obtain the ensemble
results, denoted 3s-:

e Joint: The 3D positions of the human body joints.

e Bone: The differences between the adjacent joints in the
same frame according to the human body topology.

e Motion: The differences between the coordinates of the
same joint in adjacent frames.

2) Data Transformation: Next, we describe the adopted
transformations in detail. We select the following transforma-
tions as the basic transformation set, which have been widely
adopted in previous works [6], [12]:

e Temporal Cropping: This transformation randomly selects
a subsequence of the original data by sampling a starting frame
and a length ratio. Then, the selected sequence is resampled
to a fixed length of 64 frames.

e Shearing: This transformation slants the human body 3D
coordinates to a random angle by using a shear transformation
matrix:

1 apz apz
S=laxy 1 ax]|,
az; azx 1

(24)

where a;; is the shear factor randomly sampled from [—1, 1].

e Joint Jittering: This transformation randomly selects j of
the 25 joints in the skeleton data. Then, these selected joints
are masked to zero or perturbed by a uniformly distributed
random matrix. We set j to 15 by default.

For the strong transformation set, these strategies are used
in our implementation:

e Flipping: Considering that the skeleton of the human body
is symmetrical, we exchange the positions of the left and right
subskeletons based on a probability p = 0.5.

e Rotation: For all joint coordinate sequences, the rotation
transformation randomly selects a main rotation axis A €
{X,Y,Z} and chooses a random rotation angle [0, 7/6]. For
the remaining two rotation axes, the rotation angle is randomly
sampled from [0, 7/180]. This mimics the variability of the
camera position in the real world.

e Gaussian Noise: Gaussian noise A(0, 0.01) is added to
the skeleton data based on a probability p = 0.5.

C. Evaluation and Comparison

In this section, we investigate the quality of the features
extracted by our self-supervised model for action recognition.
To this end, we evaluate our approach under a variety of
evaluation protocols, including unsupervised, semisupervised,
KNN, and transfer learning approaches. This provides a
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TABLE III

COMPARISON OF ACTION RECOGNITION RESULTS UNDER LINEAR EVALUATION ON NTU DATASETS. ENSEMBLE REPRESENTS
THE FUSION RESULTS OF THE JOINT, BONE, AND MOTION STREAMS

NTU 60 NTU 120 PKUMMD I
Method Year Stream Backbone xsub (%) xview (%) | xsub (%)  xset (%) | xsub (%)
Long TGAN [3] AAAI 2018 39.1 48.1 ; - 67.7
MS2L [4] ACM MM 2020 526 i ; - 64.9
P&C [5] CVPR 2020 50.7 763 427 417 59.9
PCRP [56] TMM 2021 Joint GRU-based 54.9 634 43.0 446 -
CRRL [57] TIP 2022 67.6 738 56.2 57.0 -
ISC [6] ACM MM 2021 76.3 852 67.1 67.9 80.9
CMD [12] ECCV 2022 798 86.9 70.3 715 -
SkeletonCLR [11] | CVPR 2021 683 76.4 56.8 559 -
AimCLR [10] AAAI 2022 743 79.7 : i -
HiCLR [13] AAAT 2023 Joint GCN-based 776 82.0 66.8 66.1 -
SkeleMixCLR [52] | arXiv 2022 80.7 85.5 69.0 68.2 -
CPM [58] ECCV 2022 78.7 84.9 68.7 69.6 88.8
H-Transformer [59] ICME 2021 Joint Transformer-based 69.3 72.8 - - -
GL-Transformer [8] | ECCV 2022 76.3 83.8 66.0 68.7 -
Ours | - | Joint | GRUbased | 839 903 | 757 772 | 897
35-HiCo [60] AAAI 2023 82.6 90.8 75.9 773 -
35-CMD [12] ECCV 2022 Ensemble GRU-based 84.1 90.9 747 76.1 -
35-CrosSCLR [11] | CVPR 2021 778 83.4 67.9 66.7 84.9
3s-AimCLR [10] | AAAI 2022 ‘ ‘ 78.9 83.8 68.2 68.8 87.4
3s-HiCLR [13] AAAT 2023 Ensemble GCN-based 80.4 85.5 70.0 70.4 -
35-CPM [58] ECCV 2022 832 87.0 73.0 74.0 -
3s-Ours - ‘ Ensemble ‘ GRU-based ‘ 87.0 92,9 ‘ 79.4 81.2 ‘ 91.7

comprehensive comparison with other state-of-the-art meth-
ods. We report the top-1 accuracy for all datasets.

1) Unsupervised Learning Approaches: In the unsupervised
setting, we use a linear evaluation mechanism to evalu-
ate the quality of the learned feature representation by the
encoder f(-). The encoder f(-) is not fine-tuned during the
linear evaluation protocol, and the linear classifier is finetuned
for the downstream task. Specifically, we use a fully connected
layer together with a softmax layer as the classifier. The SGD
optimizer is utilized with an initial learning rate of 0.1. The
learning rate is reduced to 0.01, 0.001, and 0.0001 at the 20,
50, and 70y}, epochs, respectively. The classifier is trained for
100 epochs in total.

Table III shows the results under linear evaluation on
NTU and PKUMMD benchmarks. We compare our method
with other methods, including GRU-based, GCN-based, and
transformer-based methods. Due to the knowledge exposed
by invariant and equivariant data transformations, our method
achieves a significant improvement and obtains state-of-the-art
scores under different protocols. Compared with CMD, the
enhancements observed in our proposed method stem from
two primary factors. Firstly, the introduction of equivariant
contrastive learning serves to mitigate dimensionality collapse,
thereby enriching the learned representations. Secondly, the
strategic utilization of data transformations and training strate-
gies also contributes to the observed improvements. Compared
with HiCLR, we further investigate and successfully introduce
the equivariant contrastive learning for another form of strong
data augmentation, i.e., the equivariant augmentation. Remark-
ably, our method with only a single joint stream can perform

on par with or better than many multistream-fusion methods,
demonstrating the great advantage of our approach. Mean-
while, with the fusion of three streams, the performance of
our method further improves. Notably, the proposed method
outperforms 3s-CMD by 4.7% and 5.1% on the NTU 120 xsub
and xset protocols, respectively. Our method also obtains
significant improvements on the PKUMMD dataset, which
illustrates the generalization ability of our method.

2) Semi-Supervised Learning Approaches: In semi-
supervised settings, we first utilize all data to train the
encoder f(-) in a self-supervised manner and then apply
only partial training data to finetune the model for the
downstream task. The results reflect the generalization
performance in scenarios with less labeled data available,
where the model tends to face severe overfitting problems.
In the implementation, we jointly train the linear classifier
and the encoder f(-) for 50 epochs. Subsets of the labeled
data, i.e., 1%, 5%, 10%, and 20% of the data, are randomly
selected as the training data for evaluation. The initial learning
rate is set to 0.01 and is reduced to 0.001 and 0.0001 at the
30,5 and 50y, epochs, respectively.

As shown in Table IV, our method remarkably outper-
forms other methods on NTU 60. Compared with the latest
GRU-based method, CMD, our method achieves significant
performance improvements with very small amounts of train-
ing data, i.e., 1%, and 5%, which proves the effectiveness
of the learned representations. It is noted that the work [58]
achieves better performance using 1% data. This is because it
adopts GCN as the backbone while our method is based on
GRU, which has more parameters and is more vulnerable to
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TABLE IV
PERFORMANCE COMPARISON ON NTU 60 IN TERMS OF THE SEMI-SUPERVISED EVALUATION PROTOCOL
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| NTU 60
Method | xview xsub

‘ (1% data) (5% data) (10% data) (20% data) (1% data) (5% data) (10% data) (20% data)
LongT GAN [3] - - - - 352 - 62.0 -
MS2L [4] - - - - 33.1 - 65.1 -
ASSL [64] - 63.6 69.8 74.7 - 57.3 64.3 68.0
ISC [6] 38.1 65.7 72.5 78.2 35.7 59.6 65.9 70.8
CPM [58] 57.5 - 77.1 - 56.7 - 73.0 -
CMD [12] 53.0 75.3 80.2 84.3 50.6 71.0 754 78.7
Ours 54.9 78.6 82.9 86.3 55.2 74.9 78.9 81.6
3s-CrosSCLR [11] 50.0 - 77.8 - 51.1 - 74.4 -
3s-AimCLR [10] 54.3 - 81.6 - 54.8 - 78.2 -
X-CAR [65] - 70.0 78.2 85.7 - 67.3 76.1 79.4
MAC-Learning [66] - 70.4 78.5 84.6 - 63.3 74.2 78.4
3s-CMD [12] 55.5 77.2 82.4 86.6 55.6 74.3 79.0 81.8
3s-Ours 60.7 82.0 86.0 89.0 60.8 78.5 81.7 84.7

TABLE V TABLE VI

KNN EVALUATION RESULTS ON NTU DATASETS

Method NTU 6Q NTU 120
xsub  xview | xsub  xset
LongT GAN [3] | 39.1 48.1 31,5 355
ISC [6] 62.5 82.6 50.6 523
CRRL [57] 60.7 75.2 - -
HiCLR [13] 60.6 73.1 46.0 46.0
CMD [12] 70.6 85.4 583 609
Ours 72.3 89.3 61.1 64.0

the over-fitting problem when the labeled data is extremely
little. And when more labeled data is available, i.e., 10%,
our approach shows a significant performance improvement.
We also compare our method with the latest semi-supervised
learning methods, X-CAR and MAC-Learning. Although the
self-supervised pretraining method does not rely on any labels,
our method can still achieve remarkable performance com-
pared with the semi-supervised learning methods, indicating
the strong generalization ability of our method.

3) Supervised Learning Approaches: We apply a K-nearest
neighbor (KNN) classifier, which is a nonparametric super-
vised learning method. It directly evaluates the quality of the
feature space learned by the encoder in the self-supervised
pretraining stage. We set K=1 to assign the label according
to the cosine similarity distance, following a recent approach,
CMD [12].

Table V shows the KNN evaluation results on NTU
datasets. Our method notably outperforms other methods,
including reconstruction-based methods and contrastive learn-
ing methods. Compared with CMD, our method achieves 3.9%
improvement on NTU 60 xview and 3.1% improvement on
NTU 120 xset, verifying the effectiveness of the introduced
invariant and equivariant contrastive learning. Our method
obtains a highly distinguishable feature space by modeling the
different data transformations.

4) Transfer Learning Approaches: We study the transfer
representation learning of our method to explore whether it
can acquire general knowledge across datasets. Specifically,
we first pretrain the encoder on the source dataset and then

COMPARISON OF THE TRANSFER LEARNING PERFORMANCE ON
PKUMMD WITH PRETRAINING ON NTU DATASETS

| To PKU II xsub

Method | NTU 60 (%) NTU 120 (%)
LongT GAN [3] 44.8 -
MS?L [4] 45.8 -

ISC [6] 51.1 523
CRRL [57] 48.5 ;
CMD [12] 56.0 57.0
Ours 56.5 57.8

finetune a linear classifier jointly with the encoder on the target
dataset. We choose the NTU datasets as the source datasets and
the PKUMMD dataset as the target dataset. All results reported
are under the cross-subject protocol. As shown in Table VI,
our method gives the best results under the transfer learning
evaluation. These results indicate that our method obtains more
transferrable knowledge than existing models.

D. Ablation Study

To present a detailed analysis of the proposed method,
we show the ablation experiment results in this part.
All experiments are conducted using linear evaluation with
the cross-view protocol on NTU 60 by default.

1) Invariant and Equivariant Transformations: We first
analyze the impact of the proposed invariant and equivariant
transformations. As shown in Table VII, different combina-
tions of the transformations are evaluated, as well as the effect
of the knowledge distillation objective Lxp for the strong
transformation set.

First, it is observed that the strong transformation set
can bring a 2+% improvement in performance. This indi-
cates that these transformations can further benefit invariant
learning, which supports our claim that they are invariant
transformations.

The equivariant transformations, namely, skeleton mixing
and temporal shuffling, are both proven to be beneficial
for the model performance. Taking advantage of the novel
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ABLATION STUDY ON THE DIFFERENT TRANSFORMATIONS. Shuﬁ‘le AND
Mix REPRESENT THE temporal Shuffling AND skeleton Mixing
TRANSFORMATIONS, RESPECTIVELY

TABLE VII

Invariant Trans. | Equivariant Trans. Loss Top-1

Basic  Strong | Mix Shuffle Lrxp | Accuracy
v | | 84.7%
v v v 87.3%
v v v v 89.2%
v v v v 88.1%
v v v v v 90.3%
v v 86.7%
v v v 88.5%
v v v v 89.7%

TABLE VIII

ABLATION STUDY ON THE WEIGHT )\gqu

Weight Acqu ‘ Acc. (%)

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 33, 2024
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Fig. 6. Ablation study on the loss weight for temporal shuffling.
TABLE IX

ABLATION STUDY ON THE CLIP NUMBER C IN
Temporal Shuffle TRANSFORMATION

>\equ =0 ‘ 87.3
Aegu = 0.5 89.4
Aegu = 1.0 90.3
Aegu = 1.5 89.2
>\equ =20 88.8

motion patterns exposed by the transformations, the model
further optimizes the diversity of the representation space.
We integrate the invariant and equivariant transformations into
our method and obtain the best results, as shown in Table VII.

In addition, we analyze the knowledge distillation design
for the strong transformation set. We advocate transferring
the knowledge of the basic transformation set to facilitate the
learning of a strong transformation set. As shown in Table VII,
Lk p can further boost the performance consistently.

2) Weight for Equivariant Contrastive Learning: The equiv-
ariant contrastive learning relies on the two equivariant
transformations, i.e., skeleton mixing and temporal shuffling.
Aequ controls the loss weight of equivariant contrastive learn-
ing, which is highly related to consistency and diversity in the
feature space. The effect of A, is shown in Table VIII. When
Aegu 1s 100 large, the model tends to optimize the diversity,
and satisfactory consistency cannot be obtained. Instead, when
Aequ 18 too small, the performance of the model degrades
because the motion patterns generated by the equivariant trans-
formations are not well utilized and the diversity of the feature
space is insufficient. The best performance is achieved when
Aegu = 1.0. It is also observed that training with equivariant
contrastive learning always improves the performance.

3) Temporal Shuffling Configurations: In this section,
we report ablation studies on the femporal shuffling configu-
rations with respect to the loss weight and number of clips C.

e Loss weight for temporal shuffling. We explore the
impact of the loss weight, which is the loss weight ratio of
temporal shuffling and skeleton mixing, more precisely. In the
implementation, we set the weight of £, to 1 and change the
weight of the £; term to analyze the effect. The results are
presented in Fig. 6. When the weight increases, it is observed
that the performance improves initially and then drops. The
best performance is achieved when the weight is equal to 1.0.

Clip Number | Linear =~ KNN

C=3 90.0% 88.1%

C=4 90.3% 89.3%

C=5 89.7% 88.2%

C=6 757%  73.6%
TABLE X

ABLATION STUDY ON THE IMPLEMENTATION OF skeleton Mixing
FOR EQUIVARIANT LEARNING

Equivariance Learning Implementation ‘ Accuracy (%)

w/o Skeleton Mix | 88.1
Predict the replaced joints 89.9
Maximize similarity with 2/, 90.3

e Number of Clips. The number of clips C controls the
difficulty of predicting the temporal shuffling pseudolabel.
Table IX shows the impact of the number of clips. We observe
a significant performance degradation when C is 6. This is
because when C is too large, the pretext task for temporal
shuffling becomes too difficult, and the model is more suscep-
tible to noise in the data, leading to the learning of useless
feature representations. However, when C is too small, the
prediction becomes relatively simple, which is not conducive
to the model learning better feature representations. We set C
to 4, which produces the best results in our experiment.

4) Equivariant Learning for Skeleton Mixing: We com-
pare the two implementations for the equivariant learning
of skeleton mixing in Table X. Intuitively, we simulate
the implementation of temporal shuffling to predict the
augmentation-related information, e.g. the replaced joints in
the mixed skeleton sequence, by adding a predictor. In addi-
tion, inspired by the mixing label construction according to the
mixing ratio A\, we also test the performance of constructing
the target feature manually via Eq. 6. The second method per-
forms slightly better than the first method, and both methods
yield better results than not using this transformation.

5) FLOPS and Params Results: We estimate the space and
computational complexities of the proposed model, as shown
in Table XI. The reported results are targeted at the pretraining
stage with a batch size of 128. Due to the introduction of
different data transformations, our method relies on multiple
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TABLE XI

FLOPS AND PARAMS RESULTS OF DIFFERENT MODELS. Shuffle AND Mix
REPRESENT THE temporal Shuffling AND skeleton Mixing
TRANSFORMATIONS, RESPECTIVELY

Models | Params |  FLOPs | | Accuracy
GL-Transformer [8] 214M 7596.8G 83.8%
ISC [6] 106M 1757.8G 85.2%
CMD [12] 99M 2217.3G 86.9%
Ours 103M 2217.8G 90.3%
Ours w/o Shuffle 99M 1847.7G 89.2%
Ours w/o Mix, Shuffle 99M 1478.2G 87.3%
Ours w/o Strong Trans 103M 1478.8G 89.1%
TABLE XII

FLOPS AND PARAMS RESULTS OF DIFFERENT ARCHITECTURES

Models | Params |  FLOPs | | Accuracy A

Transformer 18.54M 3101.6G 84.2% 341
GCN 0.83M 439.8G 83.4% 1.4 1
GRU 103M 2217.3G 90.3% 341

forward encoding processes for invariant or equivariant learn-
ing. This increases the computational cost of our method. For
the parameters, we adopt Bi-GRU of the same hidden size as in
recent works [6], [12]. The extra space overhead comes mainly
from the classification head for the prediction of temporal
shuffling. First, we compare our method with state-of-the-
art methods, i.e., GL-Transformer, ISC, and CMD. Although
not optimal in terms of complexity, our approach achieves a
significant performance improvement at an acceptable compu-
tational cost.

6) Architectures Results: To enhance the generality and
versatility of our proposed approach, we applied it to various
architectures. Specifically, we test our approach on both GCN,
Transformer and GRU architectures, yielding consistent per-
formance improvements across the board in Table XII. GCN
exhibits a balance between efficiency and performance, outper-
forming GRU in terms of model size and resource demand.
However, GRU achieves superior performance compared to
GCN. The performance of the Transformer is comparable to
that of GCN, but it requires more computational resources.
Notably, our approach significantly enhances performance,
especially when paired with the GRU architecture. This com-
prehensive experiment culminates in our selection of GRU as
the optimal backbone for our method.

7) Visualization Results: To qualitatively demonstrate the
effectiveness of our approach, we present a visualization of
the results of our method. We compare our method with
the baseline method using t-SNE [67] with the same set-
tings. As mentioned before, the baseline method optimizes
only ﬁl;nf , and employs only invariant contrastive learning.
All other training settings and strategies remain the same as
those of our method. We randomly select the data of 12 action
classes from the validation set for visualization. Meanwhile,
we calculate the normalized mutual information (NMI) for the
objective. A higher NMI indicates a representation space of
higher quality for downstream tasks. As shown in Fig. 7, our
method can improve the representation space consistently for
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Fig. 7. t-SNE visualization results of features on the NTU-60 xview
benchmark. Our method can improve the representation quality significantly
compared with the baseline method.

all joint, bone, and motion streams compared with the baseline
method. Additionally, the NMI results support our claim that
our method can generate a more meaningful representation
space for the downstream tasks.

V. CONCLUSION

In this paper, we propose to combine invariant contrastive
learning and equivariant contrastive learning for 3D action
representation learning, and achieve significant performance
improvement on the downstream action recognition task.
For invariant contrastive learning, a self-distillation loss is
introduced to optimize the feature consistency, which uti-
lizes the knowledge learned from basic transformations to
guide invariant learning under a strong transformation set. For
equivariant contrastive learning, we design two data transfor-
mations, skeleton mixing and temporal shuffling, to generate
more novel motion patterns. In addition, these equivariant
transformations make the model to preserve important data
properties for the downstream task. Our experiments show that
invariant transformations prioritize consistency, while equiv-
ariant transformations prioritize diversity. We demonstrate that
equivariant transformations can improve representation quality
by alleviating dimensional collapse.
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